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1. INTRODUCTION 

In this paper, we illustrate the determina- 
tion of optimum sample size by minimization of 
an appropriate loss function. The theory is 
straightforward and well known [3, 8]; however, 
opportunities to apply it do not appear 
frequently and examples in textbooks tend to be 
contrived. Surprisingly, the authors have 
recently found in the Social Security Adminis- 
tration (SSA) several applications of sampling 
which lend themselves to this technique. After 
a brief description of the basic idea and the 
general conditions required for its application, 
we describe in detail two applications in the 
newly enacted Supplemental Security Income (SSI) 

program. The paper concludes with a general 
discussion of some possible extensions of the 
technique, as well as some of the problems and 
limitations associated with it. 

The traditional textbook approach to the 
determination of sample size starts with the 
specification of the desired variance of a 
sample estimate of some population parameter, 
expresses this variance as a function of the 
sample size and of other population parameters 
assumed to be known, 

= f(n, 01, ...Ar) (1) 

and solves this equation to determine the 
required sample size. 

Since there are normally a large number of 
alternate sampling and estimation procedures 
available, we may establish relationships like 

(1) for several possible sample designs, solve 

each for n, and choose the design which gives 
the smallest value of n. Often, the variable 
cost attached to each sample unit differs for 
different designs. When this is the case, we 
will choose the design with the lowest variable 
cost. 

For some applications, the total budget is 
fixed. In that case, assuming that fixed costs 
and variable unit costs are known for each 
design, we will calculate the size of the sample 
that we can afford, calculate the variance from 
(1), and choose the design that minimizes the 
variance. 

This procedure leaves unanswered, however, 

the fundamental question of how to establish the 
appropriate variance requirements or budget for 
a particular survey or other investigation 
carried out by sampling. Commonly, the sampling 
technician for a project proposes certain relia- 
bility requirements, based on his experience 
with similar applications, and if the correspond- 
ing costs look reasonable to the project manager, 
he accepts these specifications. Alternatively, 
the project manager may specify the budget and 
the sampling technician will try to maximize 
reliability within that cost. 
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People trained in decision theory, cost - 
benefit analysis and other tools of management 
find the whole process to be rather arbitrary; 
and, as a consequence, administrators of statisti- 
cal programs often find themselves under pressure 
to develop more objective bases for allocating 
their resources among various data collection 
programs. Unfortunately for this end, no one has 
found, nor are they likely to find, any satis- 
factory way of quantifying the benefits of 
general -purpose statistical programs. We have no 

solutions to this dilemma. However, there are 

situations where a more objective approach can be 
used. These situations arise when 

1. The purpose of the sample is to obtain 

estimates of one or more population parameters 
which will be used, according to some specified 
rules, to determine an amount of money to be 
disbursed or collected. 

2. The cost of collecting and processing the 
necessary data for the sample units is known or 
can be estimated. 

3. The loss resulting from estimates which 
differ from the population parameters being 
estimated can be defined in such a way that its 
expected value is not zero. 

2. THE BASIC METHOD 

Let C = f(n) be the cost of collecting and 
processing the sample data. We will 

call this the cost function. 

n = number of units in the sample. 

Let Â = g(41 42, ..., 

be the amount to be disbursed (Â > 0) 

or collected (A < 0) by an entity, 
with 41, 42, 4s representing 

sample estimates of population para- 
meters which enter into the determi- 
nation of this amount, and 

Let L = h(Â -A) be a function representing the 
loss (or gain) to the entity when AIA, 
where A =g(Yl, Y2, ..., Ys). We will 

call this the payment error function. 

Then our loss function is 

A=E(L) + C 

If there were no constraints on the sample 
size n, we could determine its optimum i.e., the 
value that minimizes the loss function, by 
differentiating the loss function with respect to 
n and solving for n in 

Q 
an 

However, in this instance, we will introduce the 
restriction that n be an integer in the interval 

1 < n < N 

where N = number of units in the population 



from which the sample is to be 
selected 

so that in some instances the value of n which 
minimizes the loss function will have to be 
determined by other methods. 

One obvious form of the payment error 
function would be 

LI = Â - A 

However, E(L1) = 0 if Â is an unbiased 
estimate of A, and this would lead to n = 1, 

which is not very helpful. 

There are at least two ways to resolve this 
difficulty. One would be to define a function 
L2 which is always positive when AA, for 
example, a function involving IA -AI or (Â -A)2. 
This would reflect a philosophy which says there 
is always some economic loss when we err in 
estimating the amount to be disbursed or col- 
lected, regardless of the direction of the error. 
This seems like a reasonable position, but it is 
very difficult to quantify. For example, 
suppose the issue to be resolved is how much of 
the cost of a particular program is to be borne 
by the Federal and State governments, respective- 
ly. If the Federal government pays more than its 
share, and the State governments pay less, or 
vice versa, how do we evaluate the overall loss 
to the economy? This question is almost as 
difficult to answer as one requiring the quanti- 
fication of the consequences of errors in a 
general purpose statistical survey. 

A second approach is to look at the situ- 
ation from the point of view of one of the two 
parties involved, and to take the position that 
the principal concern is with losses resulting 
from errors of estimation which have unfavorable 
consequences for that party. For example, using 
the illustration from the previous paragraph, 
suppose we represent the Federal government, and 
we want to minimize losses from estimates which 
result in overpayments to the States. We may 
then define a payment error function 

L3 Â -A when A 
=0 whenA <A 

This function has a positive expected value, and 
in the important case where we can assume A to be 
normally distributed, we have 

E(L3) 
2 

where = population variance of the 
estimate A 

This is the kind of payment error function we 
have used to determine optimum sample size in 
the illustrations which follow. 

3. ILLUSTRATIONS 

We now present descriptions of two applica- 
tions of this technique in the Supplemental 
Security Income (SSI) program [2]. In the first 
one, which we call estimation of the adjusted 
payment level (APL), the cost per unit of 
obtaining and processing the data was relatively 
low, and the amounts of potential overpayments 
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were substantial. Use of the loss function 
technique led to the conclusion that there 
should be no sampling, i.e., that the calcu- 
lation of adjusted payment level should be 
based on all eligible cases. 

In the second application, which we call 
estimation of Federal fiscal liability (FFL), 
the cost per unit of obtaining data was quite 
large. Here, application of the method led to 
recommendations for sample sizes considerably 
smaller than had been proposed on other grounds. 

Application No.1 - Estimation of Adjusted 
Payment Level for the Supplemental Security 
Income Program 

The Supplemental Security Income Program 
(SSI), in effect since January 1, 1974, provides 
assistance to people with low incomes who are 
aged (65 and over), disabled or blind. Eligible 
individuals and couples receive basic Federal 

payments, the amounts depending on their living 
arrangements and on how much income, if any, 
they receive from other sources. The current 
basic payment is $146 per month for an individu- 
al living alone with no income and $219 for a 

couple. 

SSI also provides for supplementary payments 
by the States. In some cases, these payments 
are mandatory, in order to assure that persons 
who had been receiving benefits from the prior 
Federal -State assistance programs will continue 
to receive benefits at essentially the same 
level. In other cases, the supplementary pay- 
ments by the States are optional. In either 
case, the State may elect to have its supple- 
mentary payments administered by the Federal 
government. 

A provision of the SSI legislation known as 
"hold harmless" assures that no State electing 
Federal administration of its supplemental 
payments will have to spend more on this program 
than its share of the total expenditures for 
public assistance to recipients in these 
categories in calendar 1972. All costs in excess 
of this amount will be borne by the Federal 
government. 

However, in order to limit Federal liability 

under the hold harmless provision, it was 
further specified that State supplementary 
payments would be protected only to the extent 
that these payments did not exceed, on the 
average, an amount called the adjusted payment 
level (APL). The APL is defined as the average 
money payment by the State, in January 1972, to 
individuals who had no income and were living 
alone. 

In general, the States did not have avail- 
able tabulations or tape files from which they 
could readily calculate the APL, so it was 
necessary to obtain the data for eligible 
individuals (those living alone, with no income, 
in January 1972) from case folders. For States 
with small numbers of recipients this was not 
difficult, but for States with large workloads 



it appeared that locating the case folders for 

cases qualifying for inclusion in the APL calcu- 
lation, transcribing the data and making the 
calculation would be a substantial undertaking. 

This situation led to consideration of the 
possible use of sampling. Initially several 
States asked for and received permission to 
estimate APL from a sample of cases, with the 
requirement that the estimate be made with a 
standard deviation of not more than $2.50 or a 
coefficient of variation no greater than 1.5 
percent, if the latter condition permitted a 
larger standard deviation. 

Subsequently, however, concern developed 
about the possible effects of sampling error of 
the estimated APL on the size of the Federal 
liability under the hold harmless provision. It 

was at this point that the loss function 
approach was applied for the first time. 

Without going into the details of the hold 
harmless calculation, we may assert that an 
appropriate payment error function of the type 
L3 for this situation was given by: 

L3 12 W -Y) for > Y 

= 0 otherwise 
where Y = APL based on calculation includ- 

ing all eligible cases 
= estimate of Y from a simple 

random sample without replacement 
W = the program workload, i.e., the 

total number of persons currently 
receiving payments under the 
program. 

The factor of 12 was used to convert the loss to 
an annual basis, since the APL is an average 
monthly payment. We arbitrarily chose one year 
to represent the loss, even though it can in 
theory go on for an indefinite period once the 
APL is established. As will be seen, extending 
this period would not have changed our conclusion. 

Assuming the estimates from repeated 
samples to follow a normal distribution, we have 

E(L3) = 12 

N -n 1/2 = 12 

where N = number of persons eligible for 
inclusion in the APL calculation 

n = number of eligible persons in the 
sample 

aY = population standard deviation of 
the January 1972 payment level for 
eligible persons. 

In general, N «W, since W represents the entire 
current program workload, whereas N is the 
number of individuals living alone, with no 
income, in January 1972. 

Then we have for our loss function 
1/2 

9 = K( 
Nn 

) + cn 

where c = unit cost per eligible case of 
locating the case folder and 
transcribing the data 
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and K = 12 a is independent of n 
Differentiating with respect to n, we have 

-1/2 

= g (n) = - (NNñ) + c 

Keeping in mind the restriction that n be an 
integer in the interval 1 < n < N, analysis of 
g(n) shows 

4 K 
2/3 

For N < 
(c) 

g(n) is negative and uniformly 
decreasing in the interval n< N. 

Therefore, is minimized by taking 
n = N, i.e., include all eligible cases 
in the sample. 

4 K 
2/3 

2. For N = () 
g(n) = 0 at n = and is negative in 

the remainder of the interval, 

so n = is an inflection point 

and the constrained minimum for 

9 is at = N. 

2/3 
3. For N > 

3 (c) 
g(n) has its maximum at n = N. The 

equation g(n) = 0 has 2 real-roots in 
the interval 0 < n < N, one to the left 

of n = and one to the right. The 

root t 4the left is a local minimum and 
the one to the right is a local maximum. 
In order to determine the constrained 
value of n which minimizes we must 

calculate O for each of the 2 integer 
values of n surrounding the local 
minimum and for n = N and select from 
this triad the one which minimizes 9. 

In practice the approximate optimum value of 
n was easily determined by computing 9 for all 
values of n spaced at some reasonable sized 
interval, say 500, between 0 and N. 

Chart 1 illustrates the behavior of the loss 
function 9 for changing values of K. In this 

illustration, we have used fixed values 

N = 36,000 c = $10 

and allowed K to vary in the interval $10 
million to $80 million. For these values of N 
and c, we have 

4 
K-2/3 

N = (c) 

at K $44.4 million. 

For each of 6 values of K, values of the 
loss function were calculated for varying 
sample sizes, n, starting with n = 1500 and 
continuing at intervals of 750 to n = N = 36,000. 

For the first 3 values of K, all in excess 
of $44.4 million, we observe that the loss 
function decreases monotonically, and the con- 
strained minimum occurs at n = N. For K = $35 

million, there is a local minimum in the neigh- 
borhood of n = 18,750, but the constrained 

overall minimum continues to be at n = N. 



For K = $20 million and $10 million, however, 
the overall constrained minima are the local 
minima in the neighborhoods of n = 11,250 and 
n = 6,750, respectively. 

It is interesting to note that at K $34.15 
million there occurs a threshold value of K for 
which it is indifferent whether we choose n = N 
or n 18,000. For all smaller values of K, 
nopt will be the local minimum, and this will 
decrease continuously with decreasing K. 

It is also of interest to observe how nopt 
behaves if we keep K and c constant and vary N. 
Up to the threshold point, we have nopt N, so 

that nopt increases with N. Beyond this point, 
however, nopt will be the local minimum to the 

left of n = N, and we find that this decreases 
as N increases, with 

him nopt opt = 

N oo 

2/3 

Coming back to the APL application, there 
were 5 of the larger States which had initially 
estimated APL from samples. For these States, 
we had reasonably good estimates of W, the pro- 
gram workload and, from the earlier sample 
calculations, N, the number of persons eligible 
for inclusion in the APL calculation and ay, the 
variance of their January 1972 payments. 
We had only a rough idea of c, the unit cost, so 
values of A, the loss function, were calculated 
for values of c in the range $1 to $10. 

These calculations showed that nopt N for 
all States, categories (APL was estimated 
separately for aged and for disabled, including 
blind) and unit costs in the range considered. 
In other words, sampling should not be used to 
determine the APL. As a result, the APL's for 
these States estimated from samples were 
accepted only on a provisional basis, and 
arrangements were made for new calculations 
based on all eligible cases. 

Application No.2 - Determination of Federal 
Fiscal Liability to States for Errors in the 
Administration of Supplementary Payments 

Under the SSI program, 33 States and the 
District of Columbia have selected Federal 
administration of supplementary benefit payments. 
The Federal Government (SSA) determines eligi- 
bility and benefit amounts for both basic and 
supplementary payments, makes the payments and 
is reimbursed by the States for the amount of 
the supplementary payments not covered by the 
"hold harmless" provision. All administrative 
costs are borne by SSA. 

Federal fiscal liability (FFL) is the lia- 
bility which the Federal government, represented 
by SSA, has agreed to assume for excessive 
errors in making supplementary payments on behalf 
of the States. These errors are of two kinds 

Eligibility errors, which 
occur when an individual is 
incorrectly certified as 
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eligible for supplementary 
payments. 

Overpayment errors, which 
occur when an individual has 
been correctly certified as 
eligible, but the amount of 
the supplementary payment has 
been set too high. 

Errors may occur either because incorrect infor- 
mation was obtained about factors used to 
determine eligibility and benefit amounts, or 
because correct information was processed 
incorrectly. 

Errors affecting supplementary payments are 
to be identified as part of a broad quality 
assurance program, in which a sample of cases 
will be reviewed for both substantive and pro- 
cedural errors relating to the basic and /or 
supplementary payments. The reviews are ex- 
tensive, comprising an examination of materials 
in the SSI files, interviews with recipients, and 
contacts with collateral sources of information, 
such as banks and insurance companies. 

The unit cost of these reviews is high and 
the use of sampling is clearly indicated. For 

the 31 States with Federal administration of 
supplementary payments, where a primary objective 
of the sample reviews will be to determine the 
FFL, the cost -benefit approach has provided 
useful guidance in setting reasonable sample 
sizes. 

The liability determination period for FFL 
has been set at 6 months. Total liability to a 
State during a 6 -month period is estimated, using 
the results of the sample reviews, by 

A = [ye (Pe -te) ae (po -to) ao] 

where the terms are defined as follows: 

Y = total State supplementary payments 

= mean supplementary payment in the sample 

ÿe= mean supplementary payment to ineligible 
cases in the sample 

pe= proportion of ineligible cases in the 
sample 

te= tolerance limit for eligibility errors 

ae= 1 if pe > to 

= 0 otherwise 

mean overpayment of the supplementary 
payment to cases with overpayments in 
the sample 

po= proportion of cases with overpayments 
in the sample 

to= tolerance limit for overpayments 

ao= 1 ifpo>to 
= 0 otherwise 



In this case our payment error function was 
simply 

L3 =Â -A for >A 
= 0 otherwise 

where A is analogous to Â, with population 
values substituted for sample estimates. 

To simplify matters, we restricted our 
analysis to situations where the eligibility 
and overpayment error rates were substantially 
in excess of their respective tolerances 
(te .03, to = .05), so that we could let 
ae = = 1. This was a conservative approach, 
since the potential loss from overestimating A 
is clearly greatest in this range. 

With this restriction, we could assume 
estimates of A from repeated samples to be 
normally distributed so that 

E(L3) 

By the method of propagation of variances 
[4, p.585], we obtained: 

2 
a Y2 [ay ) + -te) Ye) 

-t 2 Z 2 
Y 

+ o) 
+al 

+ covariance terms] 
Y o 

where b = Ye (Pe- te) +Zo (Po-to) 

It seemed reasonable to neglect the covariance 
terms, since the variables involved are largely 
independent of each other. From our knowledge 
of the relevant population parameters, it 
appeared that would be dominated by the terms 

A 
involving ape and al 

o 
. Assuming the use of a 

simple random sample, with replacement, of n 
cases, and letting e = .8 and .4, we 

arrived at the approximation 

[.64 Pe(1 -Pe) + .16 

The overall loss function was defined as 
= E(L3) + C 

1/2 

= 64 Pe[(143e) +.16 nc 
2wn 

where c = unit cost of a case review. 

Differentiating G with respect to n, setting 
the result equal to 0 and solving for n, we 
found 1/3 

2/3 
64 Pe(1- Pe) +.16Po(1 

nopt -(2c) 2wr 

Thus, at a given level of error, the optimum 
sample size is directly proportional to the 
total amount of supplementary payments, raised 
to the two - thirds power, and inversely propor- 
tional to the cost per sample case, raised to 
the two -thirds power. 

Table 1 shows, for a unit cost c $200, the 
optimum sample sizes for various combinations of 
Y, Pe and Po. Since the average supplemental 
payments per recipient over a six -month period 
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are on the order of $400, it can be seen that 
the optimum sample size is a small fraction, 
generally less than 1 percent, of the population 
of recipients. This is in strong contrast to 
the APL application where, with a much smaller 
unit cost, the indicated solution was to include 
all eligible cases in the calculation. 

The above findings were applied directly to 
determine sample sizes for 18 States with manda- 
tory supplementation only under Federal adminis- 
tration. A minimum sample size of 100 cases 
per State was established, because we felt it 
would be difficult to persuade all parties 
involved that it made sense to estimate FFL from 
a sample any smaller than that. 

For the 13 States with mandatory and 
optional supplementation under Federal adminis- 
tration, somewhat different criteria were 
adopted, in order to be consistent with proce- 
dures currently in use to control the level of 
error by States in making payments, partly 
financed by Federal funds, under the program of 
aid to families with dependent children (AFDC). 
Nevertheless, the assigned sample sizes, with 
one or two exceptions, did not differ greatly 
from those indicated by use of the approach just 
described. 

4. DISCUSSION 

One can imagine many other applications and 
extensions of the basic method presented here. 
With respect to areas of application, any 
situation where data are needed to determine 
amounts of money to be transferred from one 
entity to another lends itself to this approach. 
In SSA, for example, when there are indications 
that a provider of services to Medicare 
enrollees may have overcharged for these services, 
there are provisions for reviewing a sample of 
cases to estimate the total extent of overcharg- 
ing and hence the amount that the provider must 
return to SSA. Present procedures for deter- 
mining sample sizes for these reviews are being 
reexamined using the technique described in this 
paper. 

There would appear to be no special diffi- 
culty in using the method for sample designs 
other than simple random sampling. For example, 
in a situation calling for stratified sampling 
to estimate a single variable, we could proceed 
as follows: 

(1) Determine optimum allocation of 
the sample for fixed n in the form 

nh =whn, 1 

where wh is a function of various 
population parameters and costs 
for the hth stratum and is 
independent of 

(2) Express the variance of A as a 
function of n and the stratum 
weights. Suppose, for example, 
that 

Â = K x 
so that = K a- 



(3) 

We have, for stratified sampling 
without replacement 

2 Sh 

(N 

which becomes, when we substitute whn 
for nh 

Nh2 2 2 1 _ E 

n h h ( 
N) Nh 

a 1/2 
hence aÂ = K ( - b) 

Solve for the optimum n in the usual 
way. In the illustration, we would 
have 1/2 

=K' - b) n c 

where K'= K (21;_)1/2 

and c 

and when we differentiate and set equal 
to 0, we find that n is the solution to 
a 4th degree equation. 

(4) Allocate the sample of size n to the 
strata using the weights wh. Since 
these weights were determined inde- 
pendently of n (within a specified 
range), we will have a solution which 
gives both the optimum sample size, n, 

for a stratified design and optimum 
allocation of the sample among the 
strata. 

Similar solutions should be possible for designs 
involving cluster and multistage sampling. 

Should we try to take into account the 
effects of nonsampling errors on the estimates 
of population parameters for use in payment or 
reimbursement formulas? This should offer no 
particular theoretical difficulty; however, in 

practical terms it would be much more difficult 
to develop a formal, predictable relationship 
between expected losses due to sampling and 
nonsampling error, and the resources expended to 
get the data. Nevertheless, for some applica- 
tions nonsampling error may dominate total error, 
and every possible effort should be made to 
consider its effects. 

What are the limitations of the cost -benefit 
technique for determining optimum sample size? 
Mostly they revolve around the difficulty of 
defining an explicit payment error function, i.e., 

the term that reflects the losses resulting from 
errors in estimating the relevant population 
parameters. The solution we have adopted is 
admittedly somewhat artificial, in that expected 
losses are based on errors in one direction only. 
It can be rationalized on the grounds that what 
we are trying to do is to protect the agency we 
represent against incurring losses which would 
expose it to the charge of failing to act in a 
prudent and responsible manner. Errors in other 
directions are considered as producing windfall 
"profits ", and these should not enter into the 
determination of the optimum design. On the 
other hand, if we consider the interests of 
society as a whole, then clearly losses can 
result from errors in either direction. However, 
the losses to society will in most cases not be 
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as large (assuming a value can be placed on them 
at all!) as the actual amounts of underpayment 
or overpayment. 

It can be argued that the agency, even 
when given a fairly precise dètermination of 
the optimum sample size, may not wish to invest 
its resources in exactly that way. The admini- 
strator cannot consider this particular problem 
in isolation from all others confronting him. 
His problem is more likely to be one of con- 
sidering relative opportunity costs of alterna- 
tive uses of more or less fixed resources. 
Thus, it is possible that some of the resources 
that would be needed to take care of the 
optimum sample could be applied in another 
area where the payoff was greater. This kind 
of consideration might be built into the model 
explicitly by introducing utility functions, 
i.e., = 

[E(L)] + u2[C] 

This would allow us to give different weights to 
real dollars which would have to be spent to 
collect and process the sample data, and 
expected dollars lost from errors in estimating 
the payment amount. 

Another question to be considered is the 
extent to which the concepts involved in deter- 
mining the optimum sample size by this method 
can be readily explained to those responsible 
for making decisions. In our experience, the 
idea of the expected loss, especially for a non- 
symmetric function like L3, has been somewhat 
difficult to explain. The use of tables showing 
values of the loss function and its components 
for various sample sizes and values of the rele- 
vant population parameters has been very helpful 
in providing a clearer view of the whole problem 
and the relationships of the variables. The 
general idea of applying a cost -benefit approach 
to determining sample size has been received 
enthusiastically, and we have been asked on 
various occasions why we can't apply the tech- 
nique to general -purpose statistical surveys! 

Despite the limitations we have described, 
we have found this method to be considerably 
more satisfactory than approaches used pre- 
viously for similar types of problems. Even in 
cases where the solution is not precise because 
some of the parameters needed could not be 
estimated accurately, the results still provide 
useful guidelines to a general course of action. 

FOOTNOTE 

1/ If sampling without replacement, independence 
will hold only in the range of n for which 
nh < Nh for all strata. 
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